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CS1151 - DATA STRUCTURES
AIM
To provide an in-depth knowledge in problem solving techniques and data structures.
OBJECTIVES
s To lean the systematic way of solving problems
« Tounderstand the different methods of orgamizing large amounts of data
o Tolearn to program in C
o To efficiently implement the different data structures
o Toefficiently implement solutions for specific problems

UNIT 1 - PROBLEM SOLVING
Problem solving — Top-down Design — Implementation — Venification — Efficiency — Analysis — Sample
algorithms.

UNIT II - LISTS, STACKS AND QUEUES
Abstract Data Type (ADDT) — The Lizt ADT — The Stack ADT - The Queue ADT

UNIT IIT - TREES

Preliminaries = Binary Trees - The Search Tree ADT = Binary Search Trees — AVL Trees = Tree Traversals
— Hashing - General Idea — Hash Function - Separate Chaining — Open Addressing — Linear Probing -
Priority Queues (Heaps) - Model - Simple implementations — Birary Heap

UNIT IV - SORTING
Preliminaries - [nsertion Sort - Shellsort — Heapsort - Mergesort — Quicksort — External Sorting

UNIT V - GRAPHS

Definitions — Topological Sort — Shortest-Path Algonithms — Unweighted Shortest Paths — Dijkstra’s Algo-
rithm — Minimum Spanning Tree — Prim's Algorithm — Applications of Depth-First Search — Undirected
Graphs — Biconnectivity — Introduction to NP-Completeness

TUTORIAL

TEXT BOOKS

I. R.G, Dromey, “How 1o Solve it by Computer” (Chaps 1-2), Prentice-Hall of India, 2002,

2. M. A. Weiss, “Data Structures and Algorithm Analysis in C”, 2* ed, Pearson Education Asia, 2002,
{chaps 3, 4.1-4.4 (except 4.3.6), 4.6, 5.1-5.4.1,6.1-6.3.3, .1-7.7 (except 7.2.2,74.1,7.5.1,76.1,7.7.5,
1.7.6),7.11,9.1-9.3.2, 9.59.5.1, 9.6-9.6.2, 0.7
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PROBLEM SOLVING

1.1 INTRODUCTION

Computer problem solving is an iteractive process requiring much thought, careful planning, logical
precision, persistance and attention to detail. At the same time, it can be challenging, exciting and
satisfying experience with personal creativity.

PROGRAMS AND ALGORITHM

A program is a set of explicit and unambiguous instructions expressed in a programming language.
It takes the input from the end user and manipulate it according to its instructions and produces an
output which represents the solution to the problem,

An algorithm consists of a set of explicit and unambiguous finite steps which, when carried out for
a given set of initial conditions, produce the corresponding output and terminate in a finite time,

1.2 PROBLEM SOLVING ASPECT

The problem solving is recognized as a ereative process which largely defines systematization and
mechanization.

The various aspects of problem solving are

1. Problem definition phase
Gietting started on a problem
The use of specific examples.

Simulation among problems.

wooB W

Working backwards from the solution.
6. General problem - solving strategies.
1.2.1 Problem definition phase

The problem definition phase deals with *What must be done rather than how to do it”. That is, the
| user tries to extract a set of precisely defined tasks from the problem statement.

# 1.2.2 Getting Started on a Froblem

There are many ways to solve most problems and also many solutions to most problems, which
makes the job of problem solving difficult to recognize quickly which paths are likely to be fruitless
or productive. Hence the programmer do not have any idea where to start on the problem, even
after the problem definition phase. They became concerned with details of the implementation
before they have completely understood or worked out an implementation (i.e..) independent
solution. So it is better not to be concerned about detail in the beginning of the problem solving

phase itself.

Data Structures 1.1

www.chennaiuniversity.net




C

Chennai

www.chennaiuniversity.net

list be used to formulate the prub-t-&m T

3. Will it reduce the amount of computation to find the intermediate results, which is based
on the way in which it is arranged.

1.3.3 Construction of loops
To construct any loop, we must take three things in account. They are

 Initial conditions - that apply before the loop begins to execute

« Invariant relation - that apply after each iteration of the loop.

+ Termination condition - under which the iterative process must terminate.
1.3.4 Establishing initial conditions for loops

To establish the initial conditions for a loop set the loop variables to the values that assumes to solve
the smallest problem associated with the loop. For example, to find the sum of a set of numbers in
an array using an iterative construct, the loop variables are i the array and loop index, and 5 the
variahle for accumulating the sum of array elements.

The smallest problem in this case is to find sum of zere numbers which is zero and so the initial
values of | and & must be zero.

1.3.5 Finding the iterative construct

After finding the smallest problem, the next step is to extend it to the next smallest problem. i.e., to
get the solution for i = [, we build on the solution to the problem for i = 0. Similarly from (i - 1"
case, we get the solution for i" case. (where iz 1),

Example 1:=10
5:=0
whilei<ndo /‘n’ represents number of iterations
begin
=1+ 1:
s . — s+ afi]
end

1.3.6 Termination of loops

The loops can be terminated in a number of ways. In general the termination conditions
dictated by the nature of the problem. The simplest condition for terminating a loop occurs wh
the number of iterations to be made is known in advance. For example, In Pascal the for-loop ¢
be used as

fori:-=1tondo
begin

Data Structures
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This loop terminates unconditionally after n iterations.
The while-loop in Pascal can be used as
while (x> 10) do
begin

end
This loop terminates when conditional expression becomes false.
1.4 IMPLEMENTATION OF ALGORITHMS

The implementation of an algorithm that has been properly designed in a top-down fashion should
_Lunalmnst mechanical process. I an algorithm has been properly designed the path of execution
should flow in a straight line from top to bottom which is much easier to understand and debug.

1.4.1 Use of procedures to emphasise modularity

Modularization of program assist for both the development of the implementation and the
readability of the main program. This allows to implement a set of independent procedures to
perform specific and well defined tasks. In applying modularization in an implementation, the
process is not taken too far, to a point at which the implementation again becomes difficult to read
because of fragmentation.

1.4.2 Choice of variable names

Choosing appropriate variable and constant names makes programs more meaningful and easier to
understand. Each variable should only have one role in a given program.

1.4.3 Documentation of programs

Another useful documenting practice that can be employed is to associate a brief but accurate
comment with each procedure. A good programming practice is always to write programs so that
they can be executed and used by other people unfamiliar about the program. This means that the
program must specify during execution exactly what responses it requires from the user.

1.4.4 Debugging programs

¢ In implementing an algorithm it is very important to carry out a number of tests to
ensure that the program is behaving correctly according to its specifications.

+ To make the task of detecting logical errors, a set of statements that will print the
information at strategic points in the computation is build into the program.

¢ The simplest way to implement this debugging tool is to have a Boolean uari.able
(eg. debug) which is set to true when the debugging output for the program is required.

Data Strucrires 13
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ebugging output can then be parenthesized in the following way:
if debug then
begin

writeln (....)

end
« A good rule to end follow when debugging is not to assume anything.
1.4.5 Program testing

In attempting to test whether or not a program will handle all variations of the problem it was
designed to solve that it will cope with the limiting and unusual cases. We might check whether the
program solves the smallest problem, whether it handles the case when all data values are the
sarme and so on. Wherever possible, input and output assertions should be accompanied to the
programs. We have to build the program that informatively respond to the user when it receives
input conditions it was not designed to handle.

A good rule to follow is that fixed numeric constants should only be used in programs for things like
the number of months in a year and so on.

1.5 PROGRAM VERIFICATION

The eost of software development is extremely high. Also, it may cause seripus changes on
sensitive data if the program doesn’t work correctly. There fare, it is essential to verify whether the
program works correctly or not.

A better method of program verification is to verify the individual modules as it is completed rather
than postponing the verification process to the end.(i.e.,) after integrating the modules.

The various phases in the program verifications are
1. Input and output assertion
2. Computer model for program execution
3. Implications and symbolic executions.
4. Verification of straight-line program segments
5. Verification of program segments with branches
6. Verification of program segments with loops
7. Verification of program segments that employ arrays

&. Proof of termination.

1.5.1 Input and Ouiput assertions

The input and output assertion is the first and foremost step that has to be taken inorder to prov
correctness of a program. It provides a formal statement which consists of specifications int

www.chennaiuniversity.net
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1 aew s neeees SLATEMENIS gives two assertions
(a) An input assertion
(b) An output assertion

Input assertion

It specifies any constraints that are placed on the value of the input variables used by the program.

Example

In the division operation let us consider *d" as the divisor. Hence it is clear that d cannot have the
value 0. The input assertion is therefore d » (.

Qutput assertion

It specifies the result symbolically that the program is expected to produce for the input data which
satisfies the input assertion.

Example

In calculating the quotient q and the remainders x from the division of *a’ by *b’, then the output
assertionisas{fa=q*b+r) A (r<b)

where “** represents the logical AND operation.

1.5.2 Compute Model for program execution

A program may have a variety of execution paths leading to successful termination, Fora given set
of input conditions only one of these paths will be followed. The progress of a computation from
specific input conditions through to termination can be thought of as a sequence of transitions from
one computation state to another. Each state is defined by the values of all variables at the

corresponding point in time.

A state transition model for program execution provides a foundation on which 1o construct

correctness proof of algorithms.

1.53.3 Implications and Symbolic execution

Verifving a program can be formulated as a set of implications which must be shown to be logically
true.

The general form of implication 15
P=0Q
P - Assumption

() - Conclusion

Dieter Straaetures 1.7
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P Q |P2Q

True | True | True

True | False | False

False | True | True

False | False | True

Fig. 1.5(a) Truth Table defining implication

In order to show that these implications or propositions are logical true, it is necessary to use the
technique of symbolic execution.

In symbolic execution, all input data values are replaced by symbolic values and all arithmetic |

operations on numbers are translated into algebraic manipulation of symbolic expression. This |
enables us to transform the verification procedure into providing that the input assertion with
symbolic values substituted for all input variables implies the output assertion with final symbolic

values substituted for all variables.

Step Normal Execution Symbolic Execution
Input values: x=3,y= 1 Input values: X=a, y=p
1. X:i=x-y=x=3-1=2 Xi=x-y=>x=a-p
2 Yimp+y stg=04]1m3 Y:=x+y=y=(a-p)+p=a
3. X:=y-x =x=3-2=| X:=y-x x=({(ax-p)+p)-
(x-p))=§.

Fig. 1.5(6) Normal and Symbolic execution for exchange mechanism,
Cunsider the following program scgment labelled with input and output assertions :
A readln (x, ¥);

{asserl ; true)

Xi=X-Y;
y. =Xty
XI=¥-X;

B jassert © = yor )y =xo}

where xo and vo refer to the initial values of x and y respectively.

Fig. 1.5(b) Exchange Mechanism program segment

www.chennaiuniversity.net
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Let us consider the exchange mechanism program segment.
The verification condition is ;
VC(A-B):true o { x = yo .~y = xo } on substitution of initial and final values of all variables, we
get:
VC(A-B):true S{(x—-p)+ B)-(a-p)
=falla-P)+P)=w
The conclusion part of the verification condition an be simplified to yield f = fPand @ = & which is

true and so the implication is true.

[Note : VC (A - B) refers to the verification condition over the program segment A to B. Therefore
apply the resultant of the program A to the program segment B, e

(i.e) Symhalic sxecution of A iz recnlted as
X=a,y= [ [initial values)
x=((a-f)+p)-(a-p)[Final Value]
y={a-p)+ ) [Final Value]
program segment B is {x = yony =xo},

L5.5 Verification of program scgments with branches

To handle program segments that contain branches, it is necessary to set up and prove verification
condition for each branch seperately. Let us consider the following program segment that ensures
| xis less than or equal to v,

| read In (x, ¥)

i A fassert P, o true}

if x > y then

B fassert Pt ((x <=y a(x=x0 Ay=y0)) v(X=y0 A ¥=X0)

In general, the propositions that must be proved for the basic if constructare P, A C, = B,

www.chennaiuniversity.net
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¢, A ~C, o Py where C, is the branch condition.

1.5.6 Verification of Program segments with loops

Problems using program segments with loops can be solved with a loop invariant,

A Loop invariant is a property that captures the progressive computational role of the loop while at
the same time remaining true, before and after each loop traversal irrespective of how many times
the loop is executed. Let us consider the following sin gle - loop program structure as model.

A {input assertion P }

Straight line program segment

B {loop invariant [}
while loop - condition do
begin
Loop-free program segment

L .
end
C {Output assertion P}

The steps to be employed to verify a loop segment arc.

Step 1: We have to show that the loop invariant is initially true. This can be done by setting
verification condition,

VC (A - B) for the program segment from A to B.

Step 2 : To show that the loop invariant is still true after the segment of program within the lo
been executed. To do this, set up a verification condition as VC (B - B).

www.chennaiuniversity.net
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loop invariant with initial values of variables set, together with condition for loop

gxecution Cﬂ , implies the truth of the loop invariant with final values of variables.

(i} g nCy 2 1,

Step 3 : The final step is verifying a loop segment, it is necessary to show that, the loop invariant
together with the negation of the loop entry condition, implies the assertion that applies on
existing form of the loop. The verification condition for this care is VC (B - C). The

corresponding proposition will be :
Ign~Cy D F

1.5.7 Verfication of program segments that employ arrays

The idea of symbolic execution can be extended to simpler examples that employ arrays by
accounting symbaolic values of all array elements.

Let ue ennzider the provgram segment which finde the pogition of the emallect element in the array.

A {assert P, 1 m21}
1:=1;
pai=
B invariant 1,:(1si<n)a(1< p<i)a(alp]<a[l].a[2]......ali])}
whilei<ndo
begin
1:=i+1;
ifafi] <a[p]thenp! =i
! end
C ‘ﬂﬂen‘ P:(1spzx n)a n(a{p}ia[]},a[i], ...... ,u[nj}}

Assume the initial values of a[1], a[2], -....... .a[n]as o, a;,....... et and the initial value of n as §,
then the symbolic execution to check the verification condition is given as :

 VC(A-B):5z1o(1<128)A(1<12])Ag < q
L5.8 Proof of termination

To Prove that a program terminates, it is necessary to show that every loop in the program
EfMminates in a finite number of steps. Consider, for example, the for - loop ;

F e

www.chennaiuniversity.net
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fori=1tondo
begin

end

when n is positive and finite, the loop is guaranteed to terminate because, with each iteration, the

number of steps to the termination condition being satisfied is reduced by at least one. This

reduction can only be carried out a finite number of times and so the loop must terminate,

The proof of termination is much more subtle and elusive for loops which has any one of the

following two situations.

+ When there is no single variable that is monotonically progressing towards the termination
condition,

*  An arithmetic combination of two or more variables makes progress towards termination with
gach itcration.

The problem of proving loop termination can often be approached by associating another

expression in addition to the loop invariant, with each loop.

The expression g, should be chosen to be a function of the variables used in the loop. It should
always be non - negative and the value is decreased with each loop iteration,

To verify the loop structure perform the following steps.

Step | : Show that the loop invariant I, together with condition for loop execution C, implies that
the value of the expresion g is greater than zero.

(i€)
TCUB): I, A Cp Dex>0
The condition €2 0 becomes an invariant of the loop.

Step 2 : Show that the loop invariant [, together with the condition for loop execut ion, Cg. implies
that the value €, of the expression before execution is strictly greater than its value €

after loop execution. (i.¢) for aloop B TC2(B - B): [, 7 €y 2 (g,>e)A(e20)

1.6 THE EFFICIENCY OF ALGORITHMS

The Efficiency considerations for algorithims are inherently tied in with the design, impleme
and analysis of algorithms. The resources used by the algorithms are central processin
(CPU) time and internal memory. So the efficiency of the algorithm lies with the economical
of these resources.

Some of the suggestions Lo improve the efficiency of an algorithm in designing are
*  Redundant computations

*  Referencing array elements

S 1oo o b Bawbon foviten i m ATEAT
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* Early detection of desired output conditions,
F @R
Sl s * Trading storage for efficiency gains.
1.6.1 REDUNDANT COMPUTATONS

The effects of redundant computations are most serious when they are embedded within a loop

that must be executed many times which utilizes unnecessary memory space. The most common
i using loops is to repeatedly recalculate part of an expression, that remains constant throughout
: unh.ru execution phase of the loop. For example

i &hu S5:=0; K:=2;

. fori=1tondo

i o

: S:=k*k*k+i;
end

gi=0 K.:=2;
K :=k*"k"k; -
fori=1tondo
begin

5:=K +i;

end

erencing array elements

- fori=2tondo
ifa [1]=a [p] then

max : = a [p]
 max:=a[l];
fori=2tondo
if a[i] > max then
max : = a[i];

www.chennaiuniversity.net
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Lo version (2) implementation would normally preferred because the condition test a[i] > max is
more efficient because it uses the variable max which requires only one memory reference
instruction, whereas the use of variable a[p] requires two memory references.

1.6.3 Inefficiency due to late termination
Inefficiencies can come into an implementation due to late termination.

Let us consider an example to search an alphabetically ordered list of names for some particular
name linearly.

Suppose we were looking for the name *Ram’, then as soon as we had encountered a name that
occurred alphabetically later than Ram, (i) Rekha, we would no need to proceed further.

The inefficient implementation could have the form :
while (namesought < > current name and not end of file) do
get next name from list
A more efficient implementation would be :
while (namesought > current name and not end of file) do
get nextname from list.
1.6.4 Early detection of desired output conditions

Due to the nature of the input data, the algorithm establishes the desired output condition before the
general conditions for termination have been met,

For example, a bubble sort might be used to sort a set of data that is already almost in sorted order,
If there have been no exchanges in the current pass, the data must be sorted and so carly
termination can be applied.

1.6.5 Trading storage for efficiency gains
Storage and efficiency is often used to improve the performance of an algorithm.

One strategy that sometimes used to speed up an algorithm is to implement the algorithm using the.
least number of loops, which makes the program much harder to read and debug. It is therefore
usually better to have one loop for one job.

1.7 THE ANALYSIS OF ALGORITHMS

The analysis of algorithms is made considering both qualitative and guantitative aspects 1o
solution that is economical in the use of computing and human resources which improve
performance of an algorithm. A good algorithm usually possess the following qualitie
capabilities.

. They are simple but powerful and general solutions.

2 They are user friendly
3. They can be easily updated,
| Thair ara corrert

www.chennaiuniversity.net



C www.chennaiuniversity.net

Chennai
They are able to be understood on a number of levels.

6 They are economical in the use of computer time, storage and peripherals.
7 They are well documented.

3. They are independent to run on a particular computer,

9 They can be used as subprocedures for other problems.

10. The solution is pleasing and satisfying to its designer.

1.7.1 Computational Complexity

The computational complexity can be measured in terms of space and time required by an
algorithm.

Space Complexity

The space complexity of an algorithm is the amount of memory it needs to run the algorithm,

Time Complexity
The time complexity of an algorithm is the amount of time it needs to run the algorithm.
The time taken by the program is the sum of the compile time and run time.

To make a quantitative measure of an algorithm’s performance, the computational model must
capture the essence of the computation while at the same time it must be divorced from any
programming language.

1.7.2 Asymtotic Notation

‘Asymtotic notations are method used to estimate and represent the efficiency of an algorithm using
simple formula. This can be useful for seperating algorithms that leads to different amounts of

work for large inputs.

Comparing or classify functions that ignores constant factors and small inputs is called as asymiotic
growth rate or asymtotic order or simply the order of functions. Complexity of an algorithm is

usually represented in U, o, @, £ notations.
Big - oh notation (0)

This is a standard notation that has been developed to represent functions which bound the
computing time for algorithms and it is used to define the worst case running time of an algorithm
and concerned with very large values of N.

Eﬁﬂlim : = T(N) = O(f(N)), if there are positive constants C and n_such that T(N) < Cf(N) when
>n,

I T"—.-—m_—-—u......,..m.. - o T
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Fig. 1.7(a) Big - oh notation T(N) O{F(N))
BIG - OMEGA NOTATION (€2)
' This notation is used to describe the best case running time of algorithms and concerned with ver
! large values of N. .
I i finition ; - T(N) = C2(f(N)), if there are positive constants C and n_ such that T(N)>=CF(N
en Nz=n_
| TO)
' CCND)

l|
I
|
l

o e e e

-

Nﬂ N
Fig. 1.7(b) BIG - OMEGA NOTATION T(N) e Q(F(N))

BIG - THETA NOTATION(€)

This notation is used to describe the average casc running time of algorithms and conce
verv laree values of n.
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: - T(N) = @(F(N)), if there are positive constants C,, C, and n_ such thaf
|. T(N) = O(F(N)) and T(N)= £ (F(N)) for all Nzn_.

g Ci(f(N))

T(N)
Cz(f(N))

N

Fig. 1.7 (¢) BIG - THETA NOTATION T(N)e 8(F(N))
Little - Oh Notation (o)

This notation is used to describe the worstcase analysis of algorithms and concerned with small

values of n.

[Definition: (V) = o( F(N))if T(N) = O(F(N))and T(N) # §(T(N))
Basic Asymptotic Efficiency Classes

Computing Time Name
0(1) constant
O(logn) Logarithmie function
O(n) Linear
O(n®) quadratic
0(n’) cubic
0(2) exponential
W nlogn) n - log - n Logarithmic
n! factorial

1.7.3 WORST - CASE, BEST - CASE AND AVERAGE - CASE EFFICIENCIES
Worst - Case - Efficiency

The worst - case efficiency of an algorithm is its efficiency for the worst - case input of size n,

"E"‘Lit!h is an input of size n for which the algorithm runs the longest among all possible inputs of that
Size,
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pest - Case Efficiency

The best - case efficiency of an algorithm is its efficiency for the best case input of size n, which is
an input of size n for which the algorithm runs the fastest among all possible inputs of that size.

Average - Case Efficiency

The average - case efficiency of an algorithm is its efficiency for the random input of size n, which
makes some assumptions about possible inputs of size n.

For example, let us consider sequential search
ALGORITHM

SequentialSearch (A[0...n-1],K)

// Input : An array A[0..n-1] and a search key k.

// Output ; Returns the index of the first element of A that matches R or -1 if there are no matching
elements.

i—=0

while 1 <nand A[i] # k do
i—itl

if i <nreturn i

else returmn - |

Here, the best - case efficiency is 0(1) where the first element is itself the search element and the
worst - case efficiency is 0{n) where the last element is the search element or the search element
may not be found in the given array.

1.8 SAMPLE ALGORITHMS
PROBLEM 1 (a) :

Give two variables a and b, exchange the values assigned to them without using temporary
variable.

INPUT : Given element a and b
OUTPUT : The value of b is stored in variable a and the value of a is stored in variable b.
ALGORITHM :
Swap (a, b)
a=a+b;
b=a-b;
a=a-b;

return a, b
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rrwsad 1 (b)
Give two variables a and b, exchange the values assigned to them using temporary variable,
INPUT : Given elementaand b
oUTPUT : The values of a and b is swapped
ALGORITHM:
Swap (a, b)
t=a;
a=b
b=t
return a, b

PROBLEM 2 .
To check whether all the elements in a given array are distinct.
INPUT : Anarray A[0...n-1]

OUTPUT : Returns “true” if all the elements in A are distinct and *false™ otherwise.
ALGORITHM :
UniqueElements (A[0..n-1])
fori=0ton-1 do
forj=i1+1ton-1do
if A[i] == A[j]
return false
return true

PROBLEM 3 :

Make a count of the number of students on a particular subject who passed the examination
scoring 50 and above.

INPUT : Number of Students (n)
OUTPUT : Total count of the students who passed in that subject.
ALGORITHM :
Passcount {n)
count =
i= 0
while (i <n)do
read (m)
www.chennaiuniversity.net
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if m == 50 then
count = count + 1;
i=i+1;
endwhile
return count
PROBLEM 4(a) :
To find the sum of a given set of numbers.
INPUT : An array A[0.. n- 1]
OUTPUT : returns sum of the elements in the given array.
ALGORITHM:
Suml({A [0.. n-1]
sum =0
fori=0ton-1do
surm = sum + Afi]
return sum

PROBLEM 4(b) :
To find the sum of the squares of a given sct of numbers.
INPUT : An array A[)..n- 1]
OUTPUT : Returns the sum of squares of a given set of numbers.
ALGORITHM :

Sumsquare (A[0.. n - 1])

gnm = ();
fori=0ton-1do
sum = sum + A[i] * A[i];

return sum

PROBLEM 5(a) :

To compute factorial of a given number without recursion.
INPUT : The element n

OUTPUT : Retums factorial of the given element n.
ALGORITHM :

fact (n)
f=1;
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or(i=l;1<=n;i++)

f=f*i;
return

PROBLEM 5(b) :

To compute factorial of a given number using recursion,
INPUT : A positive integer n

OUTPUT : Returns the factorial of the given element.

ALGORITHM :
fact (n)
if{n==0)
return 1
clse

return fact (n- 1) * n

PROBLEM 6ia) :
Generate the Fibonacci series for first n terms.

INPUT ; A positive integer n
QUTPUT : Prints Fibonacci series for n terms,
ALGORITHM :
Fibo (n}
F,=-1; F,=1
Fib=10;
fori=1tondo
Fib=F1+F2;
write Fib
Fl1=F2,
F2=Fib;
PROBLEM 6(h) :

Generate n* Fibonacci term using recursion,
INPUT : A positive integer n
OUTPUT : The n* Fibonacci number.

Er_t_l'u : 1M1
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else
return Fibo{n-1) + Fibo(n-2)

PROBLEM 7(a) :-
Design an algorithm to evaluate the function sin{x) as defined by the infinite series expansion.

Sin(x) :E__;+§_T_IT_T!+ ......
INPUT : - Get the values for x and n
OUTPUT : - Sine function for the given terms is caleulated.
ALGORITHM --
. Sineseries (x, n) // Get x in radians
| S=0
‘ term = x;
i i=1: '
| while i <=n do
i S =5+ term;
term = (term * x *x * (-1))/((i + 1) * (i + 2));
i=i+2

write S;

FROBLEM 7(b) :-
The exponential growth constant e is characterized by the eXpression

Device an algorithm to compute e to n terms,
INPUT : - Get the values of n (no. of terms)

OUTPUT : - Sum of the exponential series for *n’ terms is calculated,

Daia Structures
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EXPOSERIES (n)
i=1

e=1;

f=1;
while i <=ndo

2 e=e+ 1/
A WITLTY

' i=i+1;

write e ;

PmLEM 8 :-

Ta gart the given set of numbers.

INPUT : - An array A[0..n - | Jof orderable element.
OUTPUT : - Array A[0..n - 1] sorted in ascending order.
ALGORITHM:-

 Sort(A[0.n-1]

' 580k fori=0ton-2do

Lol forj=0ton-2-ido

iy ifAlj + 1] <A[j]

| AR swap A[j] and A[j + 1]

PROBLEM 9 :.
To search a given element in the array using binary search non recursively.
INPUT ; - An array A[0..n - 1]sorted in ascending order and a search key k.
OUTPUT : - An index of the array’s element that is equal to K or -1 if there is no such element,
ALGORITHM ;-
Binary Search (A[0 .. n - 1], K)
1=10;

r=n-|J;

while l <rdo
m=(l+r)/2

if K = A[M
%w ! [M] :
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else if K < A[M]

r=m-1

else
I=m+1
return - 1
PROBLEM 10 :-

Design an algorithm that accepts a positive integer and reverse the order of its digits.
INPUT : - A positive integer n.
OUTPUT ; - A positive integer n with reversed order of its digits.
ALGORITHM :-
Reverse (n)
s=0;
while n > 0 do
r=n%10;
| g=r+35*10;
| n=n'/l10;

Write 5

PROBLEM 11 :-
To compute the multiplication of two square matrices of order n.
INPUT : - Two n x n matrices A and B.
OUTPUT : - Matrix C=AB
ALGORITHM :-
MatrixMult (A[0.n- 1,0.n- 1], B[0..n-1,0.n-1])
fori=0ton-1do
forj=0ton-1do
Cli, j1=0
fork=0ton- | do
Ch.j1=C[i,jl+ Ali, k1 * Bk, jl;
return C
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12(a) :-
To convert the given decimal number into its binary form.
INPUT : - A positive integer n,
OUTPUT ; - A binary representation for the given decimal number n.
ALGORITHM :-
Decitobin (n)
C=m
while n = 0 do
r=n% 2;
afil]=r;
n=n'2;
C=C+1;
endwhile
fori=C-1to0

write afi];

PROBLEM 12(b) :-
To convert a binary number into a decimal number.
INPUT : - A positive integer in binary form.
OUTPUT : - decimal form of the given number is obtained.
ALGORITHM :-
Bintodeci (n)
q=n;
5=
i=0
while q= 0 do
r=q%10;
s=s5+r* pow (2, 1);
=i+l
endwhile
write s ;
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Part- A

1,_BPefine an algonthm 1

2. _Write an algorithm to swap two numbers. |

3. Define the top - down design strategy. 4

4, What is meant by problem solving?
3. Mention some of the problem solving strategies.

.- What is divide and conquer strategy?

7. What are the steps involved in problem solving?

$. Write an algorithm to find the factorial of a given number,

9, List the types of control structures.

|0. Define the worst case and average case complexities of an algorithm.
|1. How do you debug a program?

12: What 1s program testing?

| 3 What is program verification?

14. Write down the various phases in the program verification.

15. Define space complexity and time complexity. ,
16. What are the qualities and capabilities of good algorithm.

:|I II 17. How can you improve an efficiency of an algorithm in the design phase?

[ 18. What do you mean by proof of termination?
| 19. What is O - notation?
20, Write an algorithm to find the sum of a set of numbers.
Part- B
|. Explain Top - down design strategy in detail.

[

Write down the algorithm for binary search.
3. The exponential growth constant e is characterized by the expression

P A ol

Ein= o1 % BT +§+ ------ . Drevice an algorithm to compute e to n terms.

Explain in detail the types of analysis that can be performed on an algorithm,
Write an algorithm to perform matrix multiplication and give the analysis for it.
Design an algorithm to compute the sum of the squares of n numbers.

Design an algorithm that accepts a positive integer and reverses the order of digits.

LT B Lh s

Write an algorithm to convert a decimal number to its corresponding octal form.

www.chennaiuniversity.net




C www.chennaiuniversity.net

Chennai

| ABSTRACT DATA TYPE -

‘ In Wmming each program is breakdown into modules, so that no routine should ever exceed a
page. Each module is a logical unit and does a specific job modules which inturn will call another

module.
" Modularity has several advantages
1. Modules can be compiled separately which makes debugging process easier.

2. Several modules can be implemented and executed simultaneously.
3. Modules can be easily enhanced.
Abstract Data type is an extension of modular design.
An abstract data type is a set of operations such as Union, Intersection, Complement, Find etc.,

The basic idea of implementing ADT is that the operations are written once in program and can be
called by any part of the program.

2.1 THE LIST ADT

List is an ordered set of elements.

The general form of the list is
AnAy A, o A

A - First element of the list

M

A, - Last element of the list
N - Size of the list
If the element at position 1 1s A_then its successor is A_ and its predecessor is A
Various operations performed on List
L. dnsert (X, 5) - Insert the element X afer the position 5.
2. Delete (X) - The element X is deleted
3.Find (X) - Returns the position of X.
4. Next(i) - Returns the position of its successor element i+1,
5. Previous (i} - Returns the position of its predecessor i-1.
6. Print list - Contents of the list is displayed.
| 4 Makeempty - Makes the list empty.
211 Implementation of List ADT

1. Array Implementation

2. Linked List Implementation
| = 3. Cursor Implementation, »
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is a collection of specific number of data stored in a consecutive memory locations.

" Insertion and Deletion operation are expensive as it requires more data movem
" Find and Printlist operations takes constant time.
" Even if the array is dynamically allocated, an estimate of the maximum size of

list is required which considerably wastes the memory space.

20 10 30 40 50 L

A[0]  A[1]  A[Z] A3l Al4]  A[5]

Linked List Implementation

Linked list consists of series of nodes. Each node contains the element and a pointer to |
successor node. The pointer of the last node points to NULL.

DATA NEXT
ELEMENT POINTER

NODE

Insertion and deletion operations are easily performed using linked list.
Types of Linked List

1. Singly Linked List
2 Doubly Linked List
o Circular Linked List,

2.1.2 Singly Linked List

A singly linked list is a linked list in which each node contains only one link field pointing to the n
node in the list,

T00 1000 800

] .- o 20 —— 30 . - 40

350 700 1000 800
Fig. 2.1 LINKED LIST

Nerfer Crevie triiem e
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700 1000 3OO
0 =T 2 j° " 30

40

550 700 1000 800 -

Fig. 2.1 LINKED LIST WITH A HEADER

DECLARATION FOR LINKED LIST

Struct node ;
typedef struct Node *List ;
typedef struct Node *Position ;
int IsLast (List L) ;
int IsEmpty (List L) ;
position Find(int X, ListL),
[._ void Delete(int X, List L) ;
position FindPrevious(int X, List L) ;
] position FindNext(int X, ListL);
: void Insert{int X, List L, Position P) ;

i void DeleteList(List L) ;
| Struct Node

{
| intelement ;
i position Next ;

H
E_UIJTINE TO INSERT AN ELEMENT IN THE LIST
I voud Insert (int X, List L, Position P)

/* Insert after the position P*/

{

position Newnode:

Newnode = malloc (size of (Struct Node));
Dala Sirrscires 23
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If (Newnode! = NULL)
{

Chennai

Newnode — Element = X;
Newnode — Next = P—Next;
P —Next = Newnode;

i
] 350
Header L | «—
Z 700 1000 800
10 |—t— 20 |~ 30.. o 40 L/l
550 P o700/ % 1000 800
INSERT (5, P, L)
M 25 | et
1200 Mewnode

ROUTINE TO CHECK WHETHER THE LIST IS EMPTY

int IsEmpty (List L) /*Returns | if L is empty */

i
if (L —Next == NULL)

return (1);

HEALER L

Empty List

ROUTINE TO CHECK WHETHER THE CURRENT POSITION IS LAST

int IsLast (position P, List L) /* Returns 1 is P is the last position in L ¥/

{
if (P —»Next = = NULL)

return (1); '
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I.. ' |
FIND ROUTINE
| position Find (int X, List L)
| {
" /*Returns the position of X in L; NULL if X i1s not found */

position P;

P=L — Next
[ while (P! = NULL && P —Element ! = X}
| P =P —»Next;
| return P;
R
i FIND (10}

L i A TP 20 =¥ 25 V
} P

FIND PREVIOUS ROUTINE

position FindPrevious (int X, List L)
d

/* Returns the position of the predecessor */

position P;
P=L;
while (P — Next ! = Null && P —» Next — Element ! = X)
P=P — Next;
return P,
}
=
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FINDNEXT ROUTINE

position FindMext {int X, List L)
{

/*Returns the position of its successor */

P =1L — Next;
while (P —» Next! = NULL && P — Element ! = X)
P =P—=Next;

return P — Next;

L . = 10 —tu X

25

L J

X, P P—sNext

ROUTINE TO DELETE AN ELEMENT FROM THE LIST

] void Delete(int X, List L)
{
/* Delete the first occurence of X from the List */
position P, Temp;
P = Findprevious (X,L);
If (!IsLast{P,LY))

{
Temp = P —» Next:
P —Next = Temp — Next:
Free ( Temp);

i
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IL-—~~—-|m - 25 -—;ilzum
P Temp
BEFORE DELETION
L » 10 [e—1T—| 20 H

B AFTER DELETION

TINE TO DELETE THE LIST

- void DeleteList (List L)
E {
position P, Temp;
P =L —Next;
_ L —Next =NULL;
 while (P! = NULL)
’ |
Temp = P — Next
free (P);
P = Temp;

-: = [l 'I_-u -

h

20 L —Next =NULL

10 —— 20 Temp=F —» Next

P Temp
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| Temp, P = NULL
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free (P)
P =Temp

2.1.3 Doubly Linked List

A Doubly linked list is a linked list in which each node has three fields namely data field, forw,
link (FLINK) and Backward Link (BLINK). FLINK points to the successor node in the lj

whereas BLINK points to the predecessor node,

DATA
BLINK| ELEMENT FLINK

Fig. 2.1.3 {(a) NODE IN DOUBLY LINKED LIST

Header \

10 20

-] R e

Fig. 2.1.3 (b) DOUBLY LINKED LIST

STRUCTURE DECLARATION : -

Struct Node
1
int Element;
Struct Node *FLINK;
Struct Node *BLINK
b
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TO INSERT AN ELEMENT IN A DOUBLY LINKED LIST

Insert (int X, list L, position P)

Struct Node * Newnode;,
Newnode = malloc (size of (Struct Node));
If (Newnode ! = NULL)
{
Newnode — Element = X;
Newnode — Flink=P — Flink;
P — Flink — Blink = Newnode;
‘I" P — Flink = Newnode ;
~ Newnode — Blink=F;

& |___.-' .
4
Header .\
L
— A
10 20 30
-l—--——r'l % »
o
P ; "l [ |
e VL
! !
R Ty m
[] Il_.I".Il ™ '-"!.‘
b i \"-.\
i b %
WY, (O
1\. [ L H
hC 15 s
"..1 t.ﬂ'
Newnode

T
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TINE TO DELETE AN ELEMENT
void Delete (int X, List L)

Chennai

{
position P,
P =Find (X, L);
If { IsLast (P, L))
{
Temp = P,
P — Blink —Flink =NULL,;
free (Temp);
¥
else
{
Temp = P;
P — Blink —Flink=P—Flink;
P —Flink —Blink=F — Blink;
free (Temp):
}
}
Header \
I
s Tt
e 2 Jooi
b | L i 20 ‘_/7 30
s -
. _I‘-r" -
1_\_“1&. P “"“l'
Advantage o
’ Deletion operation is easier.
. Finding the predecessor & Successor of a node is easier.
isadvantage
r - More Memory Space is required since it has two pointers.
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iked list the pointer of the last node points to the first node. Circular linked list can be
jmplemerited as Singly linked list and Doubly linked list with or without headers.

Chennai

gingly Linked Circular List
A singly linked circular list i1s a [inked list in which the last node of the list points to the first node.

Header \

R

10 | » ’ 20 30 | =

L J

Fig. 2.1.4 Singly Linked Circular List With Header

Doubly Linked Circular List

%JL doubly linked circular list is a Doubly linked list in which the forward link of the last node points
to the first node and backward link of the first node points to the last node of the list.

| f —J
' 10 ¥ 20 . 30 | *
—1" + . '7

Fig. 2.1.4 (b) Doubly Linked Circular List With Header
Advantages of Circular Linked List

* Itallows to traverse the list starting at any point.
* Itallows quick access to the first and last records.
Eﬁcmmly doubly linked list allows to traverse the list in either direction.
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1. Polynomial ADT

2. Radix Sort

3. Multilist 1
Polynomial ADT
We can perform the polynomial manipulations such as addition, subtraction and differentiation etg
DECLARATION FOR LINKED LIST IMPLEMENTATION OF POLYNOMIAL AD]

Struct poly
{
int coeff ;
int power;
Struet poly *Next;

H*list 1, *list 2, *list 3;
CREATION OF THE POLYNOMIAL

poly create (poly *headl, poly *newnodel)
{

poly *ptr; ;
if (head1==NULL) |
{
head] = newnodel;
return (headl);
}
else
{
ptr = headl;
while (ptr = next ! =NULL)
ptr = pir —» next;
ptr — next = newnodel ;
}
return (head1);
)
Data Structures
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poly *ptrl, *ptr2, *newnode;
ptrl =listl;
ptr2=list2;
while (ptr1! = NULL &é& ptr2! = NULL)
|
newnode = malloc (sizeof (Struct poly));
if (ptr] — power = = ptr2 — power)
- ;
newnode —» Coeff = ptrl —» Coeff + ptrd —» coefT;
newnode — power = ptrl — power;
newnode —next = NULL;
list 3 = create (list3, newnode});
ptrl = ptrl —next;
ptr2 = ptr2 — next;
1
else
i
if {ptrl — power > ptr2 —» power)
{
newnode —» coeff = ptrl —» coefT;
newnode —» power = ptrl — power;
newnode —next = NULL;
list3 = create (list3, newnode);
ptrl = ptrl —next;
i
wﬂmnﬂs 213
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i
newnode —» coeff = ptr2 — coeff,
newnode —» power = ptr2 —» power;
newnode —»next = NULL;
list3 = create (list3, newnode);
ptr2 = ptr2 — next;

i

| j

SUBTRACTION OF TWO POLYNOMIAL

I_ void sub ()

{
poly *ptrl, *ptr2, *newnode;

ptrl = list] ;

ptr2 = list 2;

while (ptr1! = NULL && ptr2! =NULL)
d

newnode = malloc (sizeof (Struct poly));
if (ptr] —x power = = ptr? —» power)
d
newnode —» coeff = (ptrl — coeff) - (ptr2 — coefT);
newnode —» power = ptrl — power,
newnode —»next = NULL;
list3 = create (list 3, newnode);
ptrl = ptrl — next;
ptrl = ptr2 —» next;

else
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newnode — coefl = ptrl — coeff;
newnode — power = ptr] — power;
newnode — next = NULL;
list 3 = create (list 3, newnode);
ptrl = ptrl —next;

i

else

newnode —» coeff = - (ptr2 — coeft);
newnode — power = ptrl — power;
newnode — next = NULL:

list 3 = create (list 3, newnode):

ptr2 = ptr2 —» next;

| }

POLYNOMIAL DIFFERENTIATION
void diff ()

{

puly *pul, *uewonode,
ptrl = list I;

while (ptr] ! = NULL)
{

newnode = malloc (sizeof {Struct poly));
newnode —» coeff = ptrl — coeff *ptr1 — power;
newnode —» power = ptrl — power - 1;

newnode —next = NULL;

list 3 = create (list 3, newnode);

ptrl = ptrl —» next;
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ix Sort : - (Or) Card Sort
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x Sort is the generalised form of Bucket sort. [t can be performed using buckets from 0 to 9

In First Pass, all the ¢lements are sorted according to the least significant bit.

In second pass, the numbers are arranged according to the next least significant bit and so on thij
process is repeated until it reaches the most significant bits of all numbers.

The numbers of passes in a Radix Sort depends upon the number of digits in the numbers given

PASS 1:
INPUT : 25, 256, B0, 10, 5 15, 174, 187
10 15
80 174 25 256 187 8
0 I 2 3 4 5 ) 7 g q
Buckets
After Pass 1 : 80, 10, 174, 25, 15, 256, 187, 8
PASS 2 :
INPUT : 80, 10, 174, 25, 15, 256, 187, B
15 187
8 10 25 256 174 80
] | 2 3 4 5 B 7 ]
After Pass 2 B, 11, 15, 25, 256, 174, 80, 187
PASS 3
INPUT : 8. 10, 15, 25 256, 174, 80, 187
80 |
25
15
10 187 256
g 175
0 1 2 3 4 5 b 7 -4
After pass 3. 8, 11, 15, 25, 80, 175, 187, 256
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Chennai umber of digits in the given list is 3. Therefore the number of passes required to sort
'ments is 3,

‘Multi Lists

More complicated application of linked list is multilist. It is useful to maintain student registration,
‘Employee involved in different projects etc., Multilist saves space but takes more time to

implement.

T

P2

D —

Fig. 2.1.5 Multilist Tmplementation For Employee Project Allocation

An employee can involve in any number of projects and each project can be implemented by any
number of employees.

rﬁﬁphnw E, is working on project P, E, is working on project P, & E, is working on project P,
ijactP is implemented by the Employees E & E.. Project P, is implemented by the Employee

LS

2.1.6 Cursor Implementation of Linked Lists

cmrimplernﬂntation is very useful where linked list concept has to be implemented without using

C"llllﬂliﬂm on Pointer Implementation and Curson Implementation of Linked List,

Pointer Implementation Cursor Implementation
. Data are stored in a collection of structures. Data are stored in a global array of
structure contains a data and next structures. Here array index is
___Pointer. considered as an address,
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Chennai number of digits in the given list is 3. Therefore the number of passes required to sort
:lements is 3.
Multi Lists

More complicated application of linked list is multilist. It is useful to maintain student registration,
‘Employee involved in different projects etc., Multilist saves space but takes more time to

implement.
r 3
! *+ EI » E2? ' E3
; - L
l—' Pl S \ . >
El m ; r

number of employees,

-

2.1.6 Cursor Implementation of Linked Lists

Fig. 2.1.5 Multilist Tmplementation For Employee Project Allocation

An employee can involve in any number of projects and each project can be implemented by any

Employee E, is working on project P, E, is working on project P, & E, is working on project P.
Project P, is implemented by the Employees E & E.. Project P, is implemented by the Employee

Cmrimplnm&ntatinn is very useful where linked list concept has to be implemented without using

C“‘Flliﬂm on Pointer Implementation and Curson Implementation of Linked List,

Pointer Implementation Cursor Implementation
1. Data are stored in a collection of structures, Data are stored in a global array of
€0 structure contains a data and next structures. Here array index is
__POinter, considered as an address,
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i
Struct Node Cursorspace [space size]; |

(E}mm FOR CURSOR ALLOC & CURSOR FREE

s

Static position CursorAlloc (void)
{
position P;
P = CursorSpace [0].Next;
CursorSpace [0].Next = CursorSpace [P].Next:

return P;

]

Static void CursorFree { position P)

{
CursorSpace [P).Next = CursorSpace [0].Next;
CursorSpace [0].Next = P;

}

ROUTINE TO CHECK WHETHER THE LIST IS EMPTY

int IsEmpty (List L)
{ /* Returns 1 if the list is Empty */.
if (Cursorspace [0]. Next ==0)

return (1);

-

ROUTINE FOR ISLAST

int IsLast (Position P, List L)

{ * Returns 1 if the p is in last position */
if (CursorSpace [P].Next == 0)
return (1);

}
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ITINE TO FIND AN ELEMENT

position Find (int X, List L)

{
position P:
P = CursorSpace [L].Next,
while (F && CursorSpace [P].Element ! = X)
P = CursorSpace [P] Next;
return P,
i

ROUTINE TO DELETE AN ELEMENT

void Delete (int X, List L)}

{
position P, temp;
I'=Findprevious (X, L);
if (! IsLast (P, L))
|
temp = CursorSpace [P] Next;
CursorSpace [P].Next = CursorSpace [temp] Next,
CursorFree (temp),
f
;

ROUTINE FOR INSERTION

void Insert (int X, List L, position P)
{
position newnode;
newnode = CursorAlloc ( );
if (newnode ! = 0)
CursorSpace [newnode|.Element = X;
CursorSpace [newnode]. Next = CursorSpace [P].Next;

CursorSpace [P].Mext = newnode;

4
3
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